资源类型

期刊论文 256

年份

2023 30

2022 25

2021 24

2020 16

2019 11

2018 13

2017 17

2016 11

2015 9

2014 9

2013 11

2012 8

2011 13

2010 14

2009 10

2008 8

2007 10

2006 6

2005 1

2004 2

展开 ︾

关键词

催化剂 4

地震预测 2

汶川地震 2

湍流边界层 2

直接数值模拟 2

相干结构 2

&alpha 1

(GaxIn1−x)2O3薄膜;带隙可调谐;磁控溅射 1

3D支架平台 1

4D打印 1

5G 1

CO2 加氢 1

H2S 1

K 助剂 1

MOF基催化剂 1

Mn 助剂 1

P4 1

PH3 1

V-W-Mo-Cu催化剂 1

展开 ︾

检索范围:

排序: 展示方式:

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 297-302 doi: 10.1007/s11705-011-1201-1

摘要: A lattice model of the nanoscaled catalyst layer structure in proton exchange membrane fuel cells (PEMFC) was established by Monte Carlo method. The model takes into account all the four components in a typical PEMFC catalyst layer: platinum (Pt), carbon, ionomer and pore. The elemental voxels in the lattice were set fine enough so that each average sized Pt particulate in Pt/C catalyst can be represented. Catalyst utilization in the modeled catalyst layer was calculated by counting up the number of facets of Pt voxels where “three phase contact” are met. The effects of some factors, including porosity, ionomer content, Pt/C particle size and Pt weight percentage in the Pt/C catalyst, on catalyst utilization were investigated and discussed.

关键词: catalyst layer     PEM fuel cell     lattice model     Monte Carlo method     catalyst utilization    

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

《能源前沿(英文)》 2017年 第11卷 第3期   页码 334-364 doi: 10.1007/s11708-017-0490-6

摘要: Ionomer impregnation represents a milestone in the evolution of polymer electrolyte fuel cell (PEFC) catalyst layers. Ionomer acts as the binder, facilitates proton transport, and thereby drastically improves catalyst utilization and effectiveness. However, advanced morphological and functional characterizations have revealed that up to 60% of Pt nanoparticles can be trapped in the micropores of carbon support particles. Ionomer clusters and oxygen molecules can hardly enter into micropores, leading to low Pt utilization and effectiveness. Moreover, the ionomer thin-films covering Pt nanoparticles can cause significant mass transport loss especially at high current densities. Ionomer-free ultra-thin catalyst layers (UTCLs) emerge as a promising alternative to reduce Pt loading by improving catalyst utilization and effectiveness, while theoretical issues such as the proton conduction mechanism remain puzzling and practical issues such as the rather narrow operation window remain unsettled. At present, the development of PEFC catalyst layer has come to a crossroads: staying ionomer-impregnated or going ionomer-free. It is always beneficial to look back into the past when coming to a crossroads. This paper addresses the characterization and modeling of both the conventional ionomer-impregnated catalyst layer and the emerging ionomer-free UTCLs, featuring advances in characterizing microscale distributions of Pt particles, ionomer, support particles and unraveling their interactions; advances in fundamental understandings of proton conduction and flooding behaviors in ionomer-free UTCLs; advances in modeling of conventional catalyst layers and especially UTCLs; and discussions on high-impact research topics in characterizing and modeling of catalyst layers.

关键词: polymer electrolyte fuel cell     ultra-thin catalyst layer     electrostatic interactions     characterization and modeling     structure-property-performance relation     water management    

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

《能源前沿(英文)》 2023年 第17卷 第1期   页码 123-133 doi: 10.1007/s11708-022-0849-1

摘要: High cost has undoubtedly become the biggest obstacle to the commercialization of proton exchange membrane fuel cells (PEMFCs), in which Pt-based catalysts employed in the cathodic catalyst layer (CCL) account for the major portion of the cost. Although non-precious metal catalysts (NPMCs) show appreciable activity and stability in the oxygen reduction reaction (ORR), the performance of fuel cells based on NPMCs remains unsatisfactory compared to those using Pt-based CCL. Therefore, most studies on NPMC-based fuel cells focus on developing highly active catalysts rather than facilitating oxygen transport. In this work, the oxygen transport behavior in CCLs based on highly active Fe-N-C catalysts is comprehensively explored through the elaborate design of two types of membrane electrode structures, one containing low-Pt-based CCL and NPMC-based dummy catalyst layer (DCL) and the other containing only the NPMC-based CCL. Using Zn-N-C based DCLs of different thickness, the bulk oxygen transport resistance at the unit thickness in NPMC-based CCL was quantified via the limiting current method combined with linear fitting analysis. Then, the local and bulk resistances in NPMC-based CCLs were quantified via the limiting current method and scanning electron microscopy, respectively. Results show that the ratios of local and bulk oxygen transport resistances in NPMC-based CCL are 80% and 20%, respectively, and that an enhancement of local oxygen transport is critical to greatly improve the performance of NPMC-based PEMFCs. Furthermore, the activity of active sites per unit in NPMC-based CCLs was determined to be lower than that in the Pt-based CCL, thus explaining worse cell performance of NPMC-based membrane electrode assemblys (MEAs). It is believed that the development of NPMC-based PEMFCs should proceed not only through the design of catalysts with higher activity but also through the improvement of oxygen transport in the CCL.

关键词: proton exchange membrane fuel cells (PEMFCs)     non-precious metal catalyst (NPMC)     cathode catalyst layer (CCL)     local and bulk oxygen transport resistance    

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

《能源前沿(英文)》 2021年 第15卷 第2期   页码 460-472 doi: 10.1007/s11708-021-0733-4

摘要: Water transport is of paramount importance to the cold start of proton exchange membrane fuel cells (PEMFCs). Analysis of water transport in cathode catalyst layer (CCL) during cold start reveals the distinct characteristics from the normal temperature operation. This work studies the effect of CCL mesoscopic pore-morphology on PEMFC cold start. The CCL mesoscale morphology is characterized by two tortuosity factors of the ionomer network and pore structure, respectively. The simulation results demonstrate that the mesoscale morphology of CCL has a significant influence on the performance of PEMFC cold start. It was found that cold-starting of a cell with a CCL of less tortuous mesoscale morphology can succeed, whereas starting up a cell with a CCL of more tortuous mesoscale morphology may fail. The CCL of less tortuous pore structure reduces the water back diffusion resistance from the CCL to proton exchange membrane (PEM), thus enhancing the water storage in PEM, while reducing the tortuosity in ionomer network of CCL is found to enhance the water transport in and the water removal from CCL. For the sake of better cold start performance, novel preparation methods, which can create catalyst layers of larger size primary pores and less tortuous pore structure and ionomer network, are desirable.

关键词: cold start     energy conversion     fuel cells     mesoscale morphology     tortuosity     water management    

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

《能源前沿(英文)》 2019年 第13卷 第2期   页码 325-338 doi: 10.1007/s11708-019-0618-y

摘要: Polymer electrolyte membrane (PEM) fuel cell is the most promising among the various types of fuel cells. Though it has found its applications in numerous fields, the cost and durability are key barriers impeding the commercialization of PEM fuel cell stack. The crucial and expensive component involved in it is the gas diffusion electrode (GDE) and its degradation, which limits the performance and life of the fuel cell stack. A critical analysis and comprehensive understanding of the structural and functional properties of various materials involved in the GDE can help us to address the related durability and cost issues. This paper reviews the key GDE components, and in specific, the root causes influencing the durability. It also envisages the role of novel materials and provides a critical recommendation to improve the GDE durability.

关键词: PEM fuel cell     gas diffusion electrode(GDE)     gas diffusion layer(GDL)     membrane electrode assembly     durability     fuel cell catalyst    

Oxidant or catalyst for oxidation?

Jianzhi Huang, Huichun Zhang

《环境科学与工程前沿(英文)》 2019年 第13卷 第5期 doi: 10.1007/s11783-019-1158-8

摘要: Manganese oxides (MnOx) have been demonstrated to be effective materials to activate Oxone (i.e., PMS) to degrade various contaminants. However, the contribution of direct oxidation by MnOx to the total contaminant degradation under acidic conditions was often neglected in the published work, which has resulted in different and even conflicting interpretations of the reaction mechanisms. Here, the role of MnOx (as both oxidants and catalysts) in the activation of Oxone was briefly discussed. The findings offered new insights into the reaction mechanisms in PMS-MnOx and provided a more accurate approach to examine contaminant degradation for water/wastewater treatment.

关键词: Peroxymonosulfate     Manganese oxides     Catalyst     Oxidant    

Monte Carlo simulation of the PEMFC catalyst layer

WANG Hongxing, CAO Pengzhen, WANG Yuxin

《化学科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 146-150 doi: 10.1007/s11705-007-0027-3

摘要: The performance of the polymer electrolyte membrane fuel cell (PEMFC) is greatly controlled by the structure of the catalyst layer. Low catalyst utilization is still a significant obstacle to the commercialization of the PEMFC. In order to get a fundamental understanding of the electrode structure and to find the limiting factor in the low catalyst utilization, it is necessary to develop the mechanical model on the effect of catalyst layer structure on the catalyst utilization and the performance of the PEMFC. In this work, the structure of the catalyst layer is studied based on the lattice model with the Monte Carlo simulation. The model can predict the effects of some catalyst layer components, such as Pt/C catalyst, electrolyte and gas pores, on the utilization of the catalyst and the cell performance. The simulation result shows that the aggregation of conduction grains can greatly affect the degree of catalyst utilization. The better the dispersion of the conduction grains, the larger the total effective area of the catalyst is. To achieve higher utilization, catalyst layer components must be distributed by means of engineered design, which can prevent aggregation.

关键词: catalyst utilization     PEMFC     commercialization     Pt/C catalyst     conduction    

Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic

Jin Yang, Xuelian Liu, Hongbin Cao, Yanchun Shi, Yongbing Xie, Jiadong Xiao

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 185-191 doi: 10.1007/s11705-018-1713-z

摘要: An appropriate co-catalyst can significantly promote the photocatalytic efficacy, but this has been seldom studied in the visible-light photocatalysis combined with ozone, namely photocatalytic ozonation. In this work, a dendritic bismuth vanadium tetraoxide (BiVO ) material composited with highly dispersed MnO nanoparticles was synthesized, and its catalytic activity is 86.6% higher than bare BiVO in a visible light and ozone combined process. Catalytic ozonation experiments, ultra-violet-visible (UV-Vis) diffuse reflectance spectra and photoluminescence spectra jointly indicate that MnO plays a triple role in this process. MnO strengthens the light adsorption and promotes the charge separation on the composite material, and it also shows good activity in catalytic ozonation. The key reactive species in this process is ·OH, and various pathways for its generation in this process is proposed. This work provides a new direction of catalyst preparation and pushes forward the application of photocatalytic ozonation in water treatment.

关键词: manganese oxide     bismuth vanadium tetraoxide     photocatalytic ozonation     hydroxyl radical     co-catalyst    

Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder

Swati Mukhopadhyay

《化学科学与工程前沿(英文)》 2011年 第5卷 第3期   页码 385-391 doi: 10.1007/s11705-011-1101-4

摘要: This paper presents the distribution of a solute undergoing a first order chemical reaction in an axisymmetric laminar boundary layer flow along a stretching cylinder. Velocity slip condition at the boundary is used instead of no-slip condition. Similarity transformations are used to convert the partial differential equations corresponding to momentum and concentration into highly nonlinear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. The velocity decreases with increasing slip parameter. The skin friction as well as the mass transfer rate at the surface is larger for a cylinder than for a flat plate.

关键词: boundary layer     stretching cylinder     partial slip     mass transfer     similarity solution    

Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-020-1337-7

摘要:

• Activated carbon was proposed to be an efficient accelerant for molded red mud catalyst.

关键词: NOx     Selective catalytic reduction     Iron-based catalyst     Red mud     Monolithic catalyst     Activated carbon    

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

《机械工程前沿(英文)》 2020年 第15卷 第4期   页码 631-644 doi: 10.1007/s11465-020-0599-x

摘要: The ever-increasing requirements for the scalable manufacturing of atomic-scale devices emphasize the significance of developing atomic-scale manufacturing technology. The mechanism of a single atomic layer removal in cutting is the key basic theoretical foundation for atomic-scale mechanical cutting. Material anisotropy is among the key decisive factors that could not be neglected in cutting at such a scale. In the present study, the crystallographic orientation effect on the cutting-based single atomic layer removal of monocrystalline copper is investigated by molecular dynamics simulation. When undeformed chip thickness is in the atomic scale, two kinds of single atomic layer removal mechanisms exist in cutting-based single atomic layer removal, namely, dislocation motion and extrusion, due to the differing atomic structures on different crystallographic planes. On close-packed crystallographic plane, the material removal is dominated by the shear stress-driven dislocation motion, whereas on non-close packed crystallographic planes, extrusion-dominated material removal dominates. To obtain an atomic, defect-free processed surface, the cutting needs to be conducted on the close-packed crystallographic planes of monocrystalline copper.

关键词: ACSM     single atomic layer removal mechanism     crystallographic orientation effect     mechanical cutting     Manufacturing III    

Direct synthesis of diphenyl carbonate over heterogeneous catalyst: effects of structure of substitutedperovskite carrier on the catalyst activities

WU Guangwen, JIN Fang, WU Yuxin, ZHANG Guangxu, LI Dinghuo, WANG Cunwen, MA Peisheng

《化学科学与工程前沿(英文)》 2007年 第1卷 第1期   页码 59-64 doi: 10.1007/s11705-007-0012-x

摘要: The perovskite-type compound LaMnO was substituted for the part of La in position A and for the part of Mn in position B by citrate method. The phases were detected by X-ray diffraction. Powder morphologies were scanned by scanning electron microscopy. The valence of atoms was determined by X-ray photoelectron spectroscopy. It was found that the perovskite can form crystal defect and increase the proportion of high valence B element by doping. Active component Pd was loaded on various perovskite supports for synthesis of diphenyl carbonate. The results showed that the activities of catalysts in which supports have crystal defect by substitution were higher. It can be concluded that perovskite with defect structure by doping could lead to the formation of oxygen vacancy where the lattice oxygen became exchangeable with the oxygen gas. Also, this improved the redox process of the carrier by transferring electrons and activities of catalysts.

关键词: photoelectron spectroscopy     diphenyl carbonate     proportion     diffraction     perovskite    

Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1289-1300 doi: 10.1007/s11705-023-2299-7

摘要: Environmental pollution caused by the presence of aromatic aldehydes and dyes in wastewater is a serious global concern. An effective strategy for the removal of these pollutants is their catalytic conversion, possibly to valuable compounds. Therefore, the design of efficient, stable and long-lifetime catalysts is a worthwhile research goal. Herein, we used nanofibrous carbon microspheres (NCM) derived from the carbohydrate chitin present in seafood waste, and characterized by interconnected nanofibrous networks and N/O-containing groups, as carriers for the manufacture of a highly dispersed, efficient and stable Pd nano-catalyst (mean diameter ca. 2.52 nm). Importantly, the carbonised chitin’s graphitized structure, defect presence and large surface area could promote the transport of electrons between NCM and Pd, thereby endowing NCM supported Pd catalyst with high catalytic activity. The NCM supported Pd catalyst was employed in the degradation of some representative dyes and the chemoselective hydrogenation of aromatic aldehydes; this species exhibited excellent catalytic activity and stability, as well as applicability to a broad range of aromatic aldehydes, suggesting its potential use in green industrial catalysis.

关键词: biowaste chitin     nanofibrous     palladium     nano-catalyst     catalysis    

Advanced materials: adsorbent and catalyst for environmental application

Junhua LI, Shubo DENG

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 301-301 doi: 10.1007/s11783-013-0529-9

Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes

Nabarun DEY, Aniruddha SENGUPTA

《结构与土木工程前沿(英文)》 2020年 第14卷 第6期   页码 1462-1475 doi: 10.1007/s11709-020-0674-8

摘要: Slope failure occurs due to an increase in the saturation level and a subsequent decrease in matric suction in unsaturated soil. This paper presents the results of a series of centrifuge experiments and numerical analyses on a 55° inclined unsaturated sandy slope with less permeable, stronger silty sand layer inclusion within it. It is observed that a less permeable, stronger silty sand layer in an otherwise homogeneous sandy soil slope hinders the infiltration of water. The water content of the slope just above the stronger layer increases significantly, compared to elsewhere. No shear band is found to initiate in a homogeneous sandy soil slope, whereas for a non-homogeneous slope, they initiate just above the less pervious, stronger layer. A discontinuity of the shear zone is also observed for the case of a non-homogeneous soil slope. The factor of safety of a non-homogeneous, unsaturated soil slope decreases because of the less permeable, stronger layer. It decreases significantly if this less permeable, stronger soil layer is located near the toe of the slope.

关键词: non-homogeneous slope     stronger soil layer     factor of safety     centrifuge model test     unsaturated soils    

标题 作者 时间 类型 操作

Modeling nanostructured catalyst layer in PEMFC and catalyst utilization

Jiejing ZHANG, Pengzhen CAO, Li XU, Yuxin WANG

期刊论文

Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: The blessing

Jun HUANG, Zhe LI, Jianbo ZHANG

期刊论文

Exploration of the oxygen transport behavior in non-precious metal catalyst-based cathode catalyst layer

Shiqu CHEN, Silei XIANG, Zehao TAN, Huiyuan LI, Xiaohui YAN, Jiewei YIN, Shuiyun SHEN, Junliang ZHANG

期刊论文

Effect of catalyst layer mesoscopic pore-morphology on cold start process of PEM fuel cells

Ahmed Mohmed DAFALLA, Fangming JIANG

期刊论文

A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack

Arunkumar JAYAKUMAR

期刊论文

Oxidant or catalyst for oxidation?

Jianzhi Huang, Huichun Zhang

期刊论文

Monte Carlo simulation of the PEMFC catalyst layer

WANG Hongxing, CAO Pengzhen, WANG Yuxin

期刊论文

Dendritic BiVO4 decorated with MnOx co-catalyst as an efficient hierarchical catalyst for photocatalytic

Jin Yang, Xuelian Liu, Hongbin Cao, Yanchun Shi, Yongbing Xie, Jiadong Xiao

期刊论文

Chemically reactive solute transfer in a boundary layer slip flow along a stretching cylinder

Swati Mukhopadhyay

期刊论文

Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst

期刊论文

Crystallographic orientation effect on cutting-based single atomic layer removal

Wenkun XIE, Fengzhou FANG

期刊论文

Direct synthesis of diphenyl carbonate over heterogeneous catalyst: effects of structure of substitutedperovskite carrier on the catalyst activities

WU Guangwen, JIN Fang, WU Yuxin, ZHANG Guangxu, LI Dinghuo, WANG Cunwen, MA Peisheng

期刊论文

Pd nano-catalyst supported on biowaste-derived porous nanofibrous carbon microspheres for efficient catalysis

期刊论文

Advanced materials: adsorbent and catalyst for environmental application

Junhua LI, Shubo DENG

期刊论文

Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes

Nabarun DEY, Aniruddha SENGUPTA

期刊论文